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Abstract: Despite recent advances in the diagnosis and treatment of breast cancer (BC), it 
remains a global health issue affecting millions of women annually. Poor prognosis in BC 
patients is often linked to drug resistance as well as the lack of effective therapeutic options 
for metastatic and triple-negative BC. In response to these unmet needs, extensive research 
efforts have been devoted to exploring the anti-BC potentials of natural products owing to 
their multi-target mechanisms of action and good safety profiles. Various medicinal plant 
extracts/essential oils and natural bioactive compounds have demonstrated anti-cancer activ-
ities in preclinical BC models. Despite the promising preclinical results, however, the clinical 
translation of natural products has often been hindered by their poor stability, aqueous 
solubility and bioavailability. There have been attempts to overcome these limitations, 
particularly via the use of nano-based drug delivery systems (NDDSs). This review high-
lights the tumour targeting mechanisms of NDDSs, the advantages and disadvantages of the 
major classes of NDDSs and their current clinical status in BC treatment. Besides, it also 
discusses the proposed anti-BC mechanisms and nanoformulations of nine medicinal plants’ 
extracts/essential oils and nine natural bioactive compounds; selected via the screening of 
various scientific databases, including PubMed, Scopus and Google Scholar, based on the 
following keywords: “Natural Product AND Nanoparticle AND Breast Cancer”. Overall, 
these nanoformulations exhibit improved anti-cancer efficacy against preclinical BC models, 
with some demonstrating biocompatibility with normal cell lines and mouse models. Further 
clinical studies are, however, warranted to ascertain their efficacy and biocompatibility in 
humans. 
Keywords: breast cancer, drug delivery, molecular mechanisms, nanoparticles, natural 
products, phytomedicine

Introduction
Breast cancer (BC) has been recognised as a global health issue, as it is the most 
common type of cancer and the major cause of cancer death in women.1 In 2020, 
BC recorded high global incidence (2,261,419 cases) and mortality (684,996 
deaths) rates.2 Advancements in technology (eg, mammography, ultrasound, mag-
netic resonance imaging, computerised tomography and positron emission tomo-
graphy) have enabled the early detection of BC.3 Nevertheless, approximately 30% 
of patients with early-stage BC eventually relapse with metastases.4,5 Metastatic BC 
is considered to be largely incurable, with a 5-year survival rate of only 26% 
despite currently available treatment options.6
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BC is a disease of heterogenous nature.7 Based on 
the receptor expression status, BC can primarily be 
categorised into three major subtypes, including lumi-
nal A/B, human epidermal growth factor receptor 2 
(HER2)-enriched and triple-negative subtypes7 

(Figure 1). Different BC subtypes exhibit distinct bio-
logical features, with variabilities in their prognosis 
and treatment response.8 In particular, triple-negative 
breast cancer (TNBC) is associated with worse prog-
nosis, more aggressive behaviour, lack of validated 
molecular targets and limited therapeutic options (ie, 
chemotherapy), thereby rendering its management 
challenging.9,10

A multimodal approach is often employed for BC 
treatment, whereby a combination of surgery, radiotherapy, 
endocrine therapy, HER2-targeted therapy or chemother-
apy may be included in the treatment plan depending on 
the stage and subtype of BC as well as the tolerance of 
patients.11 Table 1 summarises the typical systemic ther-
apeutic options for the three major BC subtypes.12,13 

However, there have been reports of resistance to endo-
crine therapy, HER2-targeted therapy and chemotherapy 
clinically.14 Both drug resistance and the lack of effective 
therapeutic options for metastatic BC and TNBC represent 
the major obstacles in treating BC. Therefore, BC remains 
a medical area with unmet needs and has attracted 
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researches into the discovery of novel anti-BC drugs that 
offer higher efficacy with minimal toxicity.

Historically, different forms of natural products (eg, oils, 
potions, remedies and traditional medicines) have been used 
to treat various diseases and injuries.15 The medicinal proper-
ties of natural products have subsequently attracted attention 
into identifying the bioactive compound(s) of interest, mak-
ing natural products a vital source for drug discovery in 
various therapeutic areas, especially in cancer and infectious 
diseases.16 For instance, the majority (>60%) of clinically 
available anti-cancer drugs are natural product-derived.17 Of 
these drugs, paclitaxel from Taxus brevifolia, vinca alkaloids 
from Catharanthus rosea, etoposide from Podophyllum pel-
tatum as well as topotecan and irinotecan from Camptotheca 
acuminata represent some of the most effective chemother-
apeutic agents in clinics.17 There was a decline in the pursuit 
of natural product-based drug discovery by the pharmaceu-
tical industry in the 1990s, mainly due to challenges in high- 
throughput screening, bioactive compound identification and 
synthesis as well as lead optimisation.16 However, recent 
technological advancements have helped to address these 

challenges and thereby revitalised the industry’s interest to 
re-explore natural products as a potential source of new 
drugs.16

Natural products are often tested for desired bioactivities in 
the form of extracts.18 Extracts demonstrating the bioactivity 
of interest are then subjected to fractionation for the isolation 
and identification of bioactive compound(s).18 Plants, in parti-
cular, represent a natural source that has been heavily explored 
for their anti-cancer potentials.19 Studies have reported anti- 
cancer activities of various plant extracts and isolated phyto-
chemicals, which are the biologically active non-nutritive 
plant chemicals, in preclinical BC models.20,21 More recently, 
studies have also suggested the potential of using essential oils 
to treat various cancers, including BC.22,23 Essential oils, 
which are produced and secreted by specialised secretory 
structures of plants, are complex mixtures of lipophilic and 
volatile plant secondary metabolites.24,25 Natural extracts, 
essential oils and their bioactive compounds are known to 
exhibit multi-target mechanisms of action with minimal side 
effects, of which would be advantageous for cancer 
treatment.22,26

Figure 1 Stages and subtypes of breast cancer. 
Note: Created with BioRender.com. 
Abbreviations: ER, Estrogen receptor; HER2, Human epidermal growth factor receptor 2; HR, hormone receptor; PR, progesterone receptor.
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Despite the promising preclinical findings, the physico-
chemical properties of natural products generally lead to poor 
stability, aqueous solubility and bioavailability, all of which 
can hinder their clinical application.24,27 Additionally, the clin-
ical application of essential oils has also been challenged by 
their high volatility, high sensitivity to environmental condi-
tions (eg, high temperature, light and oxygen), low stability and 
high lipophilicity.24,25 Attempts made in trying to resolve these 
limitations are considered promising, especially through the 
use of nano-based drug delivery systems (NDDSs).28–31

This review first describes the tumour targeting 
mechanisms of NDDSs, and summarises the major classes 
of NDDSs by highlighting their advantages, disadvantages 
and current clinical status in BC treatment. Thereafter, the 
anti-BC mechanisms of selected natural products (includ-
ing extracts, essential oils and natural bioactive com-
pounds) and their nanoformulations that have 
demonstrated preclinical anti-BC activities are discussed.

The Tumour Targeting Mechanisms 
of Nano-Based Drug Delivery 
Systems
NDDSs represent a rapidly developing area of science, 
where nanoscale materials are utilised as carriers for deli-
vering drugs to their sites of action.32 The use of NDDSs 
for drug delivery can enhance the bioavailability of poorly 
water-soluble drugs, enable the co-delivery of multiple 
drugs, provide targeted drug delivery, protect normal 
cells from drug toxicity and prolong drug action.32–34 

Targeted drug delivery to tumours is of the utmost impor-
tance to enhance the efficacy of anti-cancer drugs while 
minimising their systemic toxicity, and it may be achieved 
by NDDSs via passive and active targeting mechanisms 
(Figure 2).35,36

The Passive Tumour Targeting Mechanism
Passive tumour targeting generally depends on a phenom-
enon called the enhanced permeation and retention (EPR) 
effect.33 Tumour angiogenesis is stimulated in response to 
the needs of tumours for nutrients, oxygen and waste 
excretion.37 However, the new tumour vasculature exhibits 
both structural and functional abnormalities.37 For 
instance, the newly formed blood vessels surrounding 
tumours are leaky (with pore sizes ranging from 100 nm 
to 2 µM), thus allowing for enhanced permeation of 
NDDSs.38 Moreover, tumours also lack normal lymphatic 
drainage system, leading to enhanced retention of these 
NDDSs.38 Overall, the EPR effect can improve the speci-
ficity of drug delivery to tumours over normal tissues by 
approximately 20–30%.33 However, NDDSs must (1) have 
reasonable stability in the blood circulation and (2) be able 
to avoid clearance by the reticuloendothelial system (RES) 
and sequestration by the mononuclear phagocyte system 
(MPS) in order to reach the tumours and achieve the EPR 
effect.39 These two challenges have specifically been 
addressed via the PEGylation of NDDSs, which can 
improve their hydrophilicity and decrease their 
immunogenicity.33

Table 1 Systemic Therapeutic Options for Three Major Breast Cancer Subtypes

Luminal A/B HER2-Enriched Triple- 
Negative

References

Endocrine Therapy 
-Selective estrogen-receptor modulators (SERMs; eg, 

tamoxifen) 
-Aromatase inhibitors (AIs; eg, exemestane, anastrozole and 

letrozole)

-Used in all 

patients

-Used only in patients with 

HR-positive breast tumours

-N/A [13]

HER2-targeted Therapy 
-Trastuzumab ± pertuzumab

-N/A -Used in all patients -N/A [13]

Chemotherapy 
-Cyclophosphamide + methotrexate + 5-fluorouracil (CMF) 
-Doxorubicin + cyclophosphamide (AC) 

-5-Fluorouracil + epirubicin + cyclophosphamide (FEC) 

-Cyclophosphamide + doxorubicin + 5-flurouracil (CAF or FAC) 
-Doxorubicin + cyclophosphamide + paclitaxel (AC-T) 

-Docetaxel + cyclophosphamide (TC)

-Used only in 

some patients

-Used in all patients -Used in 

all patients

[12,13]
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The Active Tumour Targeting Mechanism
Following the tumour accumulation of NDDSs through the 
EPR effect, drug efficiency can be further improved via 
active tumour targeting.33 Active tumour targeting is 
achieved by binding on the NDDS surface of any ligands 
that interact with receptors that are overexpressed on the 
surface of cancer cells.39 This action increases the affinity 
of NDDSs for cancer cells and may enhance their uptake 
by cancer cells via receptor-mediated endocytosis.33,40 

Interestingly, NDDSs have also been actively targeted to 
tumour microenvironment (TME),40 tumour endothelial 
cells41 and organelles of tumour cells42 for cancer therapy.

The Major Classes of Nano-Based 
Drug Delivery Systems Evaluated 
for Breast Cancer Therapy
The use of NDDSs for cancer therapy is promising, as 
NDDSs have demonstrated potentials in enhancing the 
efficacy of anti-cancer drugs, reducing their toxicity to 
normal cells and overcoming drug resistance.43 NDDSs 

can generally be grouped into three different categories, 
namely organic, inorganic and hybrid (made of ≥2 types of 
nanomaterials) NDDSs.33 Several major classes of NDDSs 
have been investigated for the delivery of anti-BC agents44 

(Figure 3). Each of these NDDS classes is associated with 
certain advantages and disadvantages (Table 2), thus 
reflecting the importance of selecting the most appropriate 
delivery system for a particular drug.

The Organic Nano-Based Drug Delivery 
Systems
The Carbon-Based Nanocarriers
The capability of carbon atoms to undergo sp-, sp2- and 
sp3-hybridisation explains the existence of multiple carbon 
allotropes.45 In addition to the three naturally occurring 
carbon allotropes (ie, amorphous carbon, diamond and 
graphite), several synthetic carbon allotropes (eg, carbon 
nanotubes, carbon nanocones, carbon nanohorns, fuller-
ene, graphene and nanodiamond) have also been 
developed.45 In recent years, carbon-based nanocarriers 
have been extensively exploited for different biomedical 

Figure 2 Passive and active targeting mechanisms of nano-based drug delivery systems to tumours. 
Notes: Created with BioRender.com. Data from Byrne et al35 and Rosenblum et al.36 

Abbreviation: NDDSs, nano-based drug delivery systems.
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applications (eg, bio-sensing and drug delivery) owing to 
their unique profiles of chemical and physical properties 
(eg, electrical and thermal conductivity, mechanical 
strength, optical properties and structural diversity).46,47 

Moreover, other aspects of carbon-based nanocarriers 
such as their large surface area, high chemical stability, 
preferential tumour accumulation and high cellular entry 
have also made them potentially promising as drug carriers 
in cancer treatment.48

An activated carbon nanoparticle-epirubicin suspension 
was developed and tested clinically as regional lymphatic 
chemotherapy in BC patients.49 It was reported that BC 
patients subjected to regional injection of activated carbon 
nanoparticle-epirubicin suspension had higher epirubicin 
concentration in the lymph nodes and lower plasma epirubi-
cin concentration than those subjected to intravenous injec-
tion of free epirubicin, indicating that this nanoformulation 

can improve the therapeutic efficacy of epirubicin while 
minimising its systemic toxicities. This nanoformulation is 
also capable of releasing epirubicin slowly in the lymph 
nodes, which may prolong its chemotherapeutic action. 
Further development of carbon-based nanocarriers is, how-
ever, often hindered by controversies surrounding their inher-
ent toxicities.48

The Dendrimers
Dendrimers are three-dimensional polymeric macromole-
cules that are characterised by their well-organised and 
highly branched structures.50 A typical dendrimer consists 
of a symmetric central core, together with an inner shell 
and an outer shell.51 The precise molecular weight, bio-
compatibility, monodispersity, high aqueous solubility, 
high biological barrier penetrability and polyvalency of 
dendrimers have contributed to their extensive biomedical 

Figure 3 Major classes of nano-based drug delivery systems for breast cancer therapy. 
Note: Created with BioRender.com. 
Abbreviations: PAMAM, poly(amidoamine); PLGA, poly(lactic-co-glycolic acid).
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and therapeutic applications (eg, imaging, gene therapy 
and drug delivery).50,52 The exploitation of dendrimers 
for drug delivery dates back to the late 1990s.53 In fact, 
dendrimers have been considered to be multi-functional 
drug carriers, as they can enhance the solubility, dissolu-
tion, adsorption, bioavailability, stability and efficacy of 
drugs as well as enable controlled drug release and tar-
geted drug delivery.52,53

Various types of dendrimers have been investigated as 
drug carriers in oncology, including dendrimer based on 
2,2-bis(hydroxymethyl) propionic acid, melamine-based 
dendrimer, poly(amidoamine) (PAMAM) dendrimer, poly 
(glycerol-succinic acid) dendrimer, poly(propylene imine) 
(PPI) dendrimer, 5-aminolevulinic acid (ALA)-containing 
dendrimer and poly-L-lysine (PLL) dendrimer.54,55 

However, while neutral and anionic dendrimers are usually 
non-toxic, cationic dendrimers often confer high toxicity.56 

Cationic dendrimers tend to interact with negatively 
charged biological membranes, which can consequently 
lead to membrane integrity disruption, cytosolic protein 
leakage and eventually cell lysis.50 It has been reported 
that the surface modification of dendrimers (eg, 
PEGylation) can mask their charge(s) and thereby reduce 
their toxicities.55

A PEGylated PLL dendrimer-based nanoformulation 
of docetaxel demonstrated superiority over conventional 
docetaxel in terms of efficacy, safety and pharmacokinetics 
in the Phase I trial, in which patients with advanced brain, 
breast, cervical, gastro-oesophageal, lung, pancreatic, 
prostate and renal cancers were enrolled.57 Based on the 
positive Phase I results, nanoformulated docetaxel has 
been advanced to Phase II.57 Similarly, a PEGylated PLL 
dendrimer-based nanoformulation of SN-38 has also pro-
gressed to Phase II following the observation of improved 
anti-cancer efficacy and safety as compared to conven-
tional irinotecan in breast, colorectal and pancreatic cancer 
patients in the Phase I component of its Phase I/II trial.58

The Lipid-Based Nanocarriers
Lipid-based nanocarriers (eg, liposomes, niosomes and 
solid-lipid nanoparticles [SLNs]) have attracted consider-
able attention in drug delivery owing to their ease of 
preparation, large-scale and low-cost production, biocom-
patibility, biodegradability, targetability, high stability and 
high drug loading capacity.59,60 Additionally, they can also 
prolong drug action by enabling controlled drug release 
and extending drug half-life.60 Lipid-based nanocarriers 
are particularly considered to have revolutionised cancer 

treatment, as they have been reported to improve the 
efficacies of anti-cancer drugs as well as reduce their 
therapeutic doses, associated toxicities and drug 
resistance.60

Liposomes are the first generation of lipid-based nano-
carriers developed for drug delivery.61 They are spherical 
lipid vesicles consisting of an aqueous core that is sur-
rounded by at least one phospholipid bilayer.62 Due to the 
amphipathic nature of phospholipids, liposomes are cap-
able of loading both hydrophobic and hydrophilic drugs 
into the lipid bilayer and the aqueous internal compart-
ments, respectively.59,61 In 1995, PEGylated liposomal 
doxorubicin was approved by the US Food and Drug 
Administration (FDA) for the treatment of AIDS-related 
Kaposi’s sarcoma, making it the first FDA-approved 
nanomedicine.63 It is currently also indicated for the clin-
ical treatment of recurrent ovarian cancer, metastatic BC 
and multiple myeloma.64 In all settings, PEGylated lipo-
somal doxorubicin has shown reduced cardiotoxicity in 
comparison to free doxorubicin.63 Liposomal cytarabine 
obtained FDA approval for the intrathecal treatment of 
lymphomatous meningitis in 1999.65 Since then, a number 
of clinical trials have been underway to establish the 
effectiveness of liposomal cytarabine in other cancer 
types.66 It was found in a Phase III trial that systemic 
therapy plus intrathecal liposomal cytarabine resulted in 
better median progression-free survival than systemic ther-
apy alone (3.8 vs 2.2 months) in BC patients with newly 
diagnosed leptomeningeal metastasis.67 Nonetheless, the 
development of liposomal nanoformulation is limited by 
difficulties with large-scale manufacturing, sterilisation 
and stability.68

Niosomes are spherical vesicles with closed bilayer 
structures that arise from the self-clustering of cholesterol 
and non-ionic surfactants in aqueous media.59 They have 
similar structures and physical-chemical properties as lipo-
somes, and can also load both hydrophobic and hydrophi-
lic drugs.68,69 In contrast to liposomes, however, niosomes 
require simpler fabrication methods, lower production 
costs and possess greater stability.68 Therefore, niosomes 
have been proposed as an alternative to liposomal delivery 
of anti-cancer drugs.59 Niosomal nanoformulations of 
cisplatin,70 doxorubicin71 and tamoxifen citrate72 have 
been reported to possess higher anti-cancer efficacy than 
their free drugs in preclinical BC models, but none of 
these has been advanced to clinical trials to date. One 
disadvantage of niosomes is that their currently 
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commercially available non-ionic surfactants (ie, Spans 
and Tweens) are all polydisperse.69

SLNs, a relatively new colloidal drug delivery system, 
are made of lipid matrices that remain in a solid state at 
physiological temperatures.60 Similar to liposomes and 
niosomes, SLNs are also capable of incorporating both 
hydrophobic and hydrophilic drugs.60 However, they are 
superior to liposomes in terms of reproducibility, feasibil-
ity of large-scale production, stability and entrapment effi-
ciency for hydrophobic drugs.73 Although no SLN-based 
nanoformulation of anti-cancer drugs has been clinically 
studied for BC treatment to date, there have been precli-
nical reports of the anti-BC activities of doxorubicin-,74 

methotrexate-,75 paclitaxel-76 and tamoxifen-77 loaded 
SLNs. However, SLNs are associated with several draw-
backs, including low drug loading capacity and risk of 
drug expulsion due to crystallisation during storage.78

The Polymer-Based Nanocarriers
In general, polymer-based nanocarriers are able to protect 
drugs from rapid metabolism and clearance by RES, liver 
and kidney as well as offer targeted delivery and sustained 
release of drugs.79 They can be prepared from either 
natural or synthetic polymers.80 As opposed to natural 
polymers, synthetic polymers are abundantly present, pos-
sess better thermal stability and mechanical properties and 
can be more easily processed to achieve desired pore size 
and scaffold geometry.81 However, synthetic polymers 
often come with impurities that can affect their biocompat-
ibility, while natural polymers generally offer better bio-
compatibility and biodegradability.82 In recent years, semi- 
synthetic polymers, which are derived from the modifica-
tion of natural polymers via blending, crosslinking or 
grafting with synthetic polymers, have been introduced.82 

They exhibit combined advantageous properties of both 
natural and synthetic polymers and thus are a highly pro-
mising type of nanomaterial for drug delivery.81

Polysaccharides represent a class of natural polymer that 
has been extensively exploited for drug delivery.83 They can 
be obtained naturally from algal (eg, alginate), animal (eg, 
chitosan, chondroitin and hyaluronic acid), plant (eg, pectin, 
cellulose and gum arabic) and microbial (eg, dextran, 
xanthan gum and hyaluronic acid) origins,84,85 among 
which alginate, chitosan, dextran and hyaluronic acid have 
been most frequently utilised for delivering anti-cancer 
drugs.83 Various synthetic polymers have also been exploited 
for the preparation of NDDSs, including hydrophobic poly-
mers such as poly(lactic-co-glycolic acid) (PLGA), poly 

(lactic acid) (PLA) and polycaprolactone (PCL) as well as 
hydrophilic polymers such as poly(ethylene glycol) (PEG), 
poly(glutamic acid) (PGA), poly(ethyleneimine) (PEI), poly 
(acrylamide) (PAM) and poly(vinyl alcohol) (PVA).84,86

Polymer-based nanoformulations of various chemother-
apeutic agents have also been clinically tested for BC treat-
ment. In a Phase III trial, a monomethoxy-poly(ethylene 
glycol)-block-poly(D,L-lactide) (mPEG-PDLLA) micellar 
formulation of paclitaxel was found to offer superior clinical 
efficacy (ie, objective response rate of 39.1% vs 24.3%) and 
manageable toxicities in comparison to conventional pacli-
taxel in patients with recurrent or metastatic HER2-negative 
BC.87 This micellar formulation of paclitaxel is now on the 
South Korean market for treating metastatic BC, non-small 
cell lung cancer (NSCLC) and ovarian cancer.88 Another 
nanoformulation, PGA-paclitaxel, has also been evaluated 
in Phase II trials for the treatment of BC, NSCLC and ovarian 
cancer.89 Specifically, a Phase II trial reported that the com-
bination of PGA-paclitaxel plus capecitabine showed signif-
icant efficacy and reasonable tolerability in metastatic BC 
patients.90 Notably, PGA-paclitaxel have been advanced to 
Phase III trials for the treatment of NSCLC and advanced 
ovarian cancer.89

The Protein-Based Nanocarriers
Protein-based nanocarriers consist of multiple protein sub-
units that can undergo spontaneous and precise self-asso-
ciation to form nanocarriers with internal hollow 
cavities.91 Over the past few years, there has been a 
rapid expansion in the practical applications (eg, biocata-
lysis, diagnostic imaging, drug delivery and vaccine devel-
opment) of protein-based nanocarriers owing to their 
unique properties.92 In addition to being biocompatible 
and biodegradable, protein-based nanocarriers also offer 
other advantages such as ease of synthesis and size con-
trol, cost-effectiveness, high stability, amenability to sur-
face modification for targeted drug delivery and ability to 
provide controlled drug release.93,94 However, nanocar-
riers derived from different proteins have been associated 
with certain disadvantages such as high cost (eg, albumin 
and ferritin), risk of prion transmission from animal 
sources (eg, collagen and gelatin), low mechanical 
strength (eg, gelatin), slow degradation (eg, silk protein 
fibroin), fast degradation (eg, gelatin and gliadin), large 
nanoparticle size (eg, gliadin) and low yield (eg, legumin, 
protamine and silk protein sericin).93,94

The most extensive use of protein-based nanocarriers 
as NDDSs has been seen in oncology. There has been a 
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heavy focus particularly on albumin nanocarriers, as albu-
min has been reported to preferentially accumulate in solid 
tumours.95 For example, nanoparticle albumin-bound 
paclitaxel that demonstrated greater anti-cancer efficacy 
and lower toxicity than conventional paclitaxel in both 
preclinical and clinical studies successfully obtained 
FDA approval for the treatment of metastatic BC in 
2005.96,97 In a Phase I trial, nanoparticle albumin-bound 
rapamycin also showed preliminary evidence of response 
and stable disease as well as acceptable tolerability in 
patients with advanced non-hematologic cancers, includ-
ing BC.98 It is currently being tested in Phase II trials, 
either alone or in combination with other therapies, for the 
treatment of various cancers such as high-grade glioma, 
newly diagnosed glioblastoma99 and advanced malignant 
perivascular epithelioid cell tumour.100

The Inorganic Nano-Based Drug Delivery 
Systems
The Metallic Nanoparticles
Metallic nanoparticles are colloidal particles with diameters 
ranging from 10 to 1000 nm.101 They are known for their 
unique catalytic, electrical, magnetic, optical and thermal 
properties, simple surface chemistry and functionalisation as 
well as ease of synthesis.102 These features have led to the 
extensive investigation of metallic nanoparticles in a wide 
range of biomedical applications (eg, diagnostic testing, ima-
ging, radiotherapy enhancement, thermal ablation as well as 
gene and drug delivery), rendering them multi-purpose.102

Metallic nanoparticles are associated with both intrin-
sic and extrinsic anti-cancer effects.102 For instance, sev-
eral metallic nanoparticles (eg, silver, gold, cerium oxide, 
copper oxide, iron oxide, titanium oxide, titanium dioxide 
and zinc oxide) have been reported to mediate intrinsic 
anti-cancer activities via different mechanisms.103,104 The 
extrinsic anti-cancer activities of metallic nanoparticles are 
seen in targeted hyperthermic therapy.105 For example, a 
thermal therapy product based on iron oxide nanoparticles 
has been approved by the European Medicines Agency 
(EMA) to treat glioblastoma.106 Following the direct injec-
tion of aqueous iron oxide nanoparticle dispersion into the 
tumour, an alternating magnetic field is applied to generate 
heat for killing the cancer cells.106

Besides being useful as anti-cancer agents, metallic nano-
particles can also be utilised as NDDSs for anti-cancer drugs. 
They have high drug loading capacity and possess a large 
surface area-to-volume ratio that facilitates chemical 

modification.107 Moreover, superparamagnetic metallic nano-
particles (eg, iron oxide) can also enable site-specific delivery 
of drugs via the application of an external magnetic field.108 A 
metallic nanoformulation, colloidal gold-bound tumour necro-
sis factor, has completed Phase I trials in patients with different 
cancers, including BC.109 It could be administered at doses 
that exceeded the maximum tolerated dose of native tumour 
necrosis factor while showing reasonable tolerability and 
tumour targetability.110 However, some metallic nanoparticles 
have been associated with toxicities even though the metals 
used are relatively inert (eg, gold, silver and copper), as well as 
with low stability and biocompatibility.39,111

The Mesoporous Silica Nanoparticles
Mesoporous silica nanoparticles (MSNs) are silica materials 
with a highly ordered porosity of 2 to 50 nm in diameter.112 

They have emerged as an ideal NDDS owing to their unique 
properties, including simple fabrication, tunable particle size 
and shape, large internal pore volume and surface area giving 
rise to high drug loading capacity, good stability, good bio-
compatibility, easy surface modification and functionalisation 
as well as capability to incorporate both hydrophilic and 
hydrophobic drugs.112–115

The first introduction of MSNs as NDDSs dates back 
to 2001 when Vallet-Regí et al116 successfully encapsu-
lated an anti-inflammatory drug (ie, ibuprofen) into MSNs. 
Considerable research efforts have since been devoted to 
the development of MSNs for treating various diseases, 
particularly cancer.113 MSN-based nanoformulations of 
various chemotherapeutic agents (eg, doxorubicin117 and 
epirubicin118) and nucleic acids (eg, siPlk1 plus miR- 
200c119 and HER2-targeted siRNA120) have demonstrated 
anti-BC effects preclinically. However, the clinical transla-
tion of MSNs may be limited by its reported toxicities (eg, 
cardiotoxicity, pulmonary toxicity, renal toxicity and 
genotoxicity).121–123

The Anti-Breast Cancer Mechanisms 
of Medicinal Plant Extracts/Essential 
Oils and Anti-Breast Cancer Activities 
of Their Nanoformulations in 
Preclinical Models
Extracts/essential oils of certain medicinal plants contain a 
cocktail of bioactive compounds that exert anti-BC activ-
ities via different mechanisms of action (Table 3). These 
bioactive compounds may exhibit synergistic effects, 
thereby allowing the extracts and essential oils to exhibit 
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higher anti-cancer activities than a single bioactive 
compound.124 However, the clinical use of extracts and 
essential oils in cancer treatment is often limited by their 
poor bioavailability.24,27 In line with this, multiple studies 
have developed nanoformulations for medicinal plant 
extracts/essential oils that have demonstrated anti-BC 
potentials preclinically but could not be translated clini-
cally due to bioavailability issues (Table 4).

The Adiantum capillus-veneris and Pteris 
quadriaurita Extracts
Adiantum capillus-veneris, or southern maidenhair fern, is a 
type of herb generally cultivated in temperate and tropical 
regions.125 It is widely distributed in America, Europe, 
Atlantic coast as far as Ireland, southern Alpine valley regions, 
Australia and Iran.125 Traditionally, A. capillus-veneris is uti-
lised either as a single herbal medicine or in multi-herbal 
formulations to treat human diseases such as bronchial dis-
orders, cold, cough, fever, hepatitis, jaundice, skin disorders 
and tumours.125,126 Its therapeutic potential is further reflected 
by a range of reported pharmacological activities, including 
anti-diabetic,127 anti-inflammatory,128 antimicrobial,129 anti- 
nociceptive,130 hypocholesterolemic,131 wound healing,132 

antioxidant and anti-cancer133 activities.
Pteris, one of the largest fern genera, consists of 

approximately 200–250 species.134 Pteris spp. are widely 
distributed on all continents except Antarctica. They have 
been used by humans as ornamental plants, arsenic hyper-
accumulators, food, spices and medicines.134,135 

Importantly, Pteris is known to be rich in ent-kaurane 
diterpenoids, a compound class whose members often 
possess good anti-cancer activity.135 For example, Pteris 
quadriaurita (striped brake fern) has been reported to 
exhibit anti-cancer activity136 in addition to anti-bacterial, 
anti-fungal, anti-haemolytic and antioxidant activities.137

The methanolic leaf extracts of both A. capillus-veneris 
and P. quadriaurita have demonstrated anti-cancer activ-
ities against BC cell lines.136 In the same study, the 
researchers synthesised gold nanoparticles (AuNPs) from 
these extracts and evaluated the effects of the resulting 
AuNPs on MCF-7 and BT-47 BC cell lines. Only P. 
quadriaurita AuNPs were found to possess greater cyto-
toxicity against MCF-7 cells than its free extract (IC50 

values of 9 µg/mL vs 380 µg/mL). Nonetheless, subse-
quent gene and protein expression analyses revealed that 
MCF-7 and BT-47 cells treated with A. capillus-veneris 
and P. quadriaurita AuNPs had a more significant Ta
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reduction in the protein level of proliferating cell nuclear 
antigen (PCNA; ie, a proliferation marker) than those 
treated with free extracts. A more significant reduction in 
the mRNA and protein levels of cyclin D1 and the protein 
level of cyclin-dependent kinase (CDK)4, as well as a 
more significant increase in the mRNA level of p21 (ie, 
a CDK inhibitor) and the protein level of nuclear p21 
relative to cytosolic p21 were also observed. Moreover, 
both A. capillus-veneris and P. quadriaurita extracts and 
their AuNPs also induced apoptosis in MCF-7 and BT-47 
cells, as evidenced by a significant increase in the number 
of TUNEL- and Annexin V-positive cells. Apoptosis was 
further confirmed to be mediated by the mitochondrial 
apoptotic pathway, as indicated by a drop in mitochondrial 
membrane potential (ΔΨm); a significant increase in the 
mRNA and protein levels of Bcl-2-associated X protein 
(Bax; ie, a pro-apoptotic protein) and the protein levels of 
caspase-9 (ie, an initiator caspase of the mitochondrial 
apoptotic pathway), caspase-3 (ie, an effector caspase) 
and cytosolic cytochrome c relative to mitochondrial cyto-
chrome c; as well as a significant decrease in the mRNA 
and protein levels of B-cell lymphoma 2 (Bcl-2; ie, an 
anti-apoptotic protein). Importantly, AuNPs induced 
greater changes in the expression of the abovementioned 
apoptotic markers than their free extracts. Taken together, 
these findings suggest that the formulation of A. capillus- 
veneris and P. quadriaurita extracts into AuNPs can 
improve their anti-proliferative, cell cycle arrest-inducing 
and pro-apoptotic activities against BC cells.

The Annona muricata Extracts
Annona muricata is a fruit tree widely cultivated in the 
tropical regions of Central and South America, Western, 
Central and Eastern Africa as well as Southeast Asia.138 It 
is known by a range of common names at different places, 
including Soursop (English), Guanábana (Latin American 
Spanish), Graviola (Portuguese) and Omusitafeli/Ekitafeli 
(Uganda).138 Traditionally, different parts of A. muricata 
such as fruits, leaves, seeds, flowers, bark and roots have 
been used to treat cancer, diabetes, malaria, parasitic infec-
tions and stomach ache, etc.138,139 More recent studies have 
discovered various pharmacological activities of A. muricata 
extracts, including anti-arthritic,140 anti-convulsant,141 anti- 
diabetic,142 anti-hypertensive,143 antioxidant,144 anti- 
parasitic,145 hypolipidemic,146 wound healing,147 

gastroprotective,148 hepatoprotective,149 anti-inflammatory 
and analgesic150 activities. In particular, extracts prepared 
from A. muricata leaves, fruits and seeds have demonstrated 

both in vitro and in vivo anti-BC activities.151–154 These anti- 
BC activities have been linked to the regulation of immune 
system, the reduction of inflammation, the suppression of 
various signalling pathways (eg, epidermal growth factor 
receptor [EGFR], mitogen-activated protein kinase 
[MAPK], phosphoinositide 3-kinase/protein kinase B 
[PI3K/AKT] and nuclear factor-kappa B [NF-κB]), the mod-
ulation of cell cycle regulators, as well as the stimulation of 
ROS generation and consequent induction of caspase-depen-
dent apoptosis.151,153,154

Sabapati et al155 loaded A. muricata ethanolic fruit 
extract into SLNs and found that extract-loaded SLNs 
caused a greater dose-dependent reduction in MCF-7 cell 
viability than the free extract (IC50 values of 12 µg/mL vs 
30 µg/mL). Flow cytometric analysis of Annexin V-FITC- 
stained cells further showed that extract-loaded SLNs 
could induce a significantly higher percentage of apoptotic 
MCF-7 cell death than the free extract (86.0% vs 71.34%). 
Interestingly, void SLNs did not elicit significant cytotoxi-
city against MCF-7 cells. Collectively, these findings indi-
cate that SLNs are biocompatible NDDSs capable of 
enhancing the cytotoxicity and pro-apoptotic activity of 
A. muricata extract against BC cells.

In another study, Jabir et al156 reported the green 
synthesis of silver nanoparticles using silver nitrate solu-
tion and A. muricata aqueous peel extract. The resulting 
silver nanoparticles (AMSNPs) elicited a significant, time- 
dependent anti-proliferative effect on AMJ-13 BC cell line 
(IC50 = 17.34 µg/mL) but had a less significant effect on 
normal HBL breast epithelial cell line. This anti-prolifera-
tive activity of AMSNPs was linked to the induction of 
apoptosis via p53 signalling, as evidenced by the observa-
tions of disrupted membrane integrity and lysosomal 
vacuoles, increased percentage of sub-G1 phase corre-
sponding to apoptotic cells, ΔΨm loss and upregulated 
p53 expression in treated AMJ-13 cells. However, the 
study did not compare the anti-BC effect of AMSNPs 
with that of free A. muricata aqueous peel extract.

The Ipomoea turpethum Extracts
Ipomoea turpethum (or Operculina turpethum), commonly 
known as “transparent wood rose”, can be found in many 
countries such as Africa, America, Bangladesh, China, India, 
Madagascar, Mauritania, Pakistan, Philippines and Sri 
Lanka.157,158 It is one of the medicinal plants that have 
been employed in the Ayurvedic medicine for treating bron-
chitis, cancer, cervical lymphadenitis, chronic gout, constipa-
tion, dysmenorrhea, fever, fistulas, hemorrhoids, herpes, 
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induced lacrimation, inflammation, jaundice, neurological 
disorders, obesity, skin disorders and ulcers.157,158 

Additionally, I. turpethum extracts (ie, from stems, roots, 
aerial and whole part) have also demonstrated anti-cancer 
potentials in preclinical BC models.159,160 One study further 
showed that the anti-BC activities of I. turpethum stem 
extract are mediated, at least partly, via its antioxidant 
activity.159

Similarly, Mughees et al161 found that I. turpethum etha-
nolic extracts prepared from different plant parts (ie, flowers, 
leaves, roots, aerial and whole part) demonstrated significant 
cytotoxicities against both MCF-7 and MDA-MB-231 BC cell 
lines. The root extract that exhibited the greatest cytotoxicity 
(IC50 values of 452.35 µg/mL for MCF-7 cells and 310 µg/mL 
for MDA-MB-231 cells) was subsequently loaded into poly 
(N-isopropylacrylamide) (NIPAAM; for temperature sensitiv-
ity), N-vinyl pyrrolidone (VP; for temperature sensitivity) and 
acrylic acid (AA; for pH sensitivity) co-polymeric nanoparti-
cles. The TME is generally more acidic and has a higher 
temperature than normal tissues owing to the excessive lactic 
acid produced from enhanced glycolysis and the secretion of 
pyrogenic substances by tumour cells.162 Intriguingly, the 
NIPAAM-VP-AA double-triggered nanoparticle system 
takes advantage of these TME characteristics for targeted 
delivery of loaded root extract to the tumour sites.161 

Expectedly, it was observed that this nanoformulation exerted 
greater cytotoxicity than the free root extract (ie, IC50 values of 
221.81 µg/mL for MCF-7 cells and 171.13 µg/mL for MDA- 
MB-231 cells). Moreover, IC50 concentrations of this nano-
formulation also markedly reduced MCF-7 (from 99.2% to 
57.7%) and MDA-MB-231 (from 99.3% to 55.4%) cell pro-
liferation; as well as significantly increased the percentage of 
early and late apoptotic MCF-7 (from 2.2% to 3.4% and from 
4.1% to 9.2% respectively) and MDA-MB-231 (from 6.3% to 
14.7% and from 4.5% to 7.3% respectively) cells, the con-
densation of nuclear chromatin and the accumulation of MCF- 
7 (from 50.7% to 63.4%) and MDA-MB-231 (from 57.9% to 
81.3%) cell populations in G0/G1 phase. These observations 
collectively indicate that the NIPAAM-VP-AA co-polymeric 
nanoparticle-based nanoformulation can enhance the cytotoxi-
city of I. turpethum extract as well as exert anti-proliferative, 
pro-apoptotic and cell cycle arrest-inducing activities against 
BC cells.

The Mirabilis jalapa Extracts
Mirabilis jalapa (four o’clock flower), a medicinal plant that 
can be found in Brazil, India and Mexico, has been used 
traditionally in the treatment of abscess, boils, bruises, 

diarrhoea, inflammation, pain, piles, ulcers, urticaria and 
wounds.163 It has been reported to contain ribosome-inactivat-
ing proteins (RIPs).163 RIPs are a family of proteins with 
N-glycosidase activity that catalyses the removal of a single 
adenine from ribosomal ribonucleic acid, thereby leading to 
protein synthesis inhibition.164 They play a key role in defend-
ing plants against attacks from pathogens and insects.165 

Interestingly, RIPs isolated from M. jalapa leaves have 
demonstrated cytotoxicity against T47D BC cell line.166 

However, more needs to be done to fully elucidate the anti- 
BC mechanism(s) of RIPs.

As proteins are subjected to rapid enzymatic degradation 
following oral administration and have poor membrane per-
meability, Wicaksono et al167 formulated a RIP extract of M. 
jalapa leaves (RIP-MJ) into anti-EpCAM antibody-conju-
gated alginate-chitosan nanoparticles. Epithelial cell adhe-
sion molecule (EpCAM) is a transmembrane glycoprotein 
that is lowly expressed in normal breast tissues but becomes 
overexpressed in breast carcinomas.168 As such, conjugation 
of nanoparticles with anti-EpCAM antibody enables active 
breast tumour targeting. For instance, anti-EpCAM antibody- 
conjugated and unconjugated RIP-MJ nanoparticles elicited 
greater cytotoxicity against T47D cells than free RIP-MJ 
(IC50 values of 13.27 µg/mL and 14.87 µg/mL vs 1842.03 
µg/mL).167 Interestingly, while free RIP-MJ had a lower IC50 

value in normal Vero kidney cells than in T47D cells 
(1387.87 µg/mL vs 1842.03 µg/mL), the opposite was 
observed for anti-EpCAM antibody-conjugated (IC50 values 
of 33.62 µg/mL vs 13.27 µg/mL) and unconjugated (IC50 

values of 27.84 µg/mL vs 14.87 µg/mL) RIP-MJ nanoparti-
cles. These findings collectively suggest that the use of 
NDDS and targeting ligand can improve both the cytotoxi-
city and the selectivity of RIP-MJ against BC cells.

The Plectranthus amboinicus Extracts
Plectranthus amboinicus, commonly known as Indian 
borage, is an Asian native plant that can also be found in 
the Americas.169 It has been used in Brazil to treat various 
medical conditions such as inflammation and cancer.170 In 
particular, its leaves have been reported to contain com-
pounds with anti-cancer activities (eg, cinaminics, essen-
tial oils, flavonoids and terpene derivatives).169 

Unsurprisingly, preclinical studies focussing on P. amboi-
nicus leaf extract revealed its anti-BC activities.169–174 In 
one of these studies, the pro-apoptotic activity of P. amboi-
nicus leaf extract was linked to the activation of caspase-3 
and caspase-7.171
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Hasibuan and Sumaiyah175 loaded P. amboinicus etha-
nolic leaf extract into chitosan-sodium tripolyphosphate 
nanoparticles (PAEEN) and reported that 24 h of PAEEN 
treatment could cause a dose-dependent reduction in T47D 
cell viability (IC50 = 89.166 µg/mL). Interestingly, although 
T47D cell proliferation increased following 24 h of PAEEN 
treatment, a dose-dependent reduction in T47D cell prolif-
eration was seen following 48 h and 72 h of PAEEN treat-
ment. Subsequent flow cytometric analysis revealed that 
PAEEN could also induce apoptosis in T47D cells. 
However, the study did not compare these observed cyto-
toxic, anti-proliferative and pro-apoptotic activities of 
PAEEN with those of free P. amboinicus ethanolic leaf 
extract.

The Punica granatum Extracts
Punica granatum (pomegranate), a deciduous shrub native 
to Asian countries such as Iran and India, is also widely 
cultivated in Mediterranean countries, such as Egypt, 
Morocco, Spain, Tunisia and Turkey.176,177 The therapeu-
tic potentials of various P. granatum parts (ie, bark, flow-
ers, fruits, leaves, roots and seeds) have been recognised 
early and exploited in different traditional medicine sys-
tems (eg, Ayurveda, Chinese, Islamic and Persian) for 
treating diarrhoea, dysentery, heart choking, intense 
cough, jaundice, nasal bleeding, periodontitis, sore throat, 
spleen diseases, ulcers, etc.178 These medicinal benefits of 
P. granatum are attributed to its pharmacological activities 
such as antimicrobial,179 antioxidant,180 wound healing,181 

cardioprotective,182 anti-inflammatory and anti- 
nociceptive183 activities. There has also been extensive 
preclinical evaluation of the potential utilisation of P. 
granatum fruit and peel extracts in BC treatment.184–188 

Evidences from these studies suggested that the anti-BC 
activities of P. granatum extracts are mediated via the 
suppression of NF-κB and β-catenin signalling pathways; 
the downregulation of Rho GTPases; the modulation of 
cellular eicosanoid profile, metastasis-related and epithe-
lial-mesenchymal transition (EMT) markers; the downre-
gulation of DNA repair genes and consequent induction of 
DNA double-strand breaks; and its anti-estrogenic activity.

Shirode et al189 encapsulated P. granatum fruit extract 
into poly(lactic-co-glycolic acid)–poly(ethylene glycol) 
(PLGA-PEG) nanoparticles and reported that P. granatum 
extract-loaded nanoparticles induced a more significant 
reduction in MCF-7 and Hs578T BC cell growth than the 
free extract (IC50 values of 19.36 ± 3.70 µg/mL vs 44.34 ± 
7.81 µg/mL in MCF-7 cells and 29.17 ± 7.60 µg/mL vs 

61.93 ± 16.11 µg/mL in Hs578T cells). Interestingly, void 
PLGA-PEG nanoparticles had no significant effect on 
MCF-7 and Hs578T cell growth. These observations col-
lectively indicate that the PLGA-PEG nanoparticle system 
is biocompatible and capable of enhancing the growth- 
inhibitory activity of P. granatum extract against BC cells.

Besides, Badawi et al190 loaded P. granatum fruit 
extract into SLNs and found that this nanoformulation 
significantly reduced MCF-7 cell viability to a greater 
extent than the free extract, with a 47-fold reduction in 
IC50 value (1.05 µg/mL vs 49.2 µg/mL). Similarly, void 
SLNs were observed to exhibit cytotoxicity against MCF- 
7 cells. The observed enhancement in cytotoxicity may 
thus, at least partly, be explained by the synergistic effect 
between P. granatum extract and SLNs. Importantly, P. 
granatum extract-loaded SLNs had a higher IC50 value in 
normal HFB-4 melanocytes than in MCF-7 cells (19.34 
µg/mL vs 1.05 µg/mL), suggesting that this nanoformula-
tion is BC cell-selective. Collectively, these observations 
suggest that SLNs can enhance the cytotoxicity of P. 
granatum extract against BC cells, possibly via synergism 
and improvement of BC cell selectivity.

The Putranjiva roxburghii Extracts
Putranjiva roxburghii (or Drypetes roxburghii), an ever-
green tree native to India, is locally referred to as 
“Amulet-Plant or Wild Olive or Child-Life-Tree”.191 It is 
also widely distributed in Bangladesh, Myanmar, Nepal, 
Sri Lanka, Thailand, Papua New Guinea, Taiwan, the 
United States, Trinidad and Tobago.191,192 Traditionally, 
it has been used in Ayurveda for treating conditions such 
as azoospermia, burning sensation, hot swellings, eye dis-
orders, smallpox as well as mouth and stomach ulcers.192 

More recent studies have revealed the anti-BC, anti-epi-
leptic, antioxidant, anti-inflammatory, antimicrobial, anti- 
nociceptive and anti-pyretic potentials of P. roxburghii leaf 
and seed extracts.193–195 However, further mechanistic 
studies are required to explain how P. roxburghii extracts 
exert these pharmacological activities.

Balkrishna et al196 carried out the green synthesis of 
silver nanoparticles using silver nitrate solution and P. rox-
burghii aqueous seed extract. The study revealed that P. 
roxburghii silver nanoparticles (PJSNPs) could exert more 
potent cytotoxic effect on MDA-MB-231 cells than the free 
extract (IC50 values of 0.26 mg/mL vs 7.7 mg/mL). This 
promising finding may be attributed to the small size (~8 ± 2 
nm) and negative zeta potential (−26.71 mV) of PJSNPs, 
which can enhance both their bioavailability and cellular 
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uptake. Furthermore, IC50 concentration of PJSNPs also 
increased the percentage of apoptotic cells (69%) and 
induced DNA fragmentation in MDA-MB-231 cells. 
Notably, PJSNP treatment did not show marked cytotoxi-
city against peripheral blood mononuclear cells (PBMCs). 
Taken together, this nanoformulation can enhance the cyto-
toxicity of P. roxburghii extract and exert pro-apoptotic 
activity against BC cells while sparing toxicities against 
PBMCs. Another study by Nayaka et al197 similarly 
reported the cytotoxicity of PJSNPs against MCF-7 cells 
(IC50 = 72.32 µg/mL).

The Zataria multiflora Essential Oils
Zataria multiflora, or Avishan-e-Shirazi, is a thyme-like 
plant that can be found extensively in Iran, Afghanistan 
and Pakistan.198 It is not only a popular condimental plant 
but also a traditional medicinal plant that has been 
employed as anaesthetic, analgesic, anthelmintic, anti-diar-
rheal, antiseptic, anti-spasmodic, carminative, diaphoretic, 
diuretic, stimulant and vermifuge agents.199 More recent 
studies have evaluated the pharmacological activities of Z. 
multiflora essential oil (ZEO), the constituents of which 
are dominated by oxygenated monoterpenes, monoterpene 
hydrocarbons and sesquiterpene hydrocarbons.200 Besides 
antimicrobial,201 antioxidant,202 anti-cholinesterase and 
anti-inflammatory203 activities, ZEO has also been 
reported to mediate potent anti-BC activities via the sti-
mulation of ROS generation, the intercalation of DNA 
strands, the induction of DNA damage and the eventual 
induction of mitochondrial apoptotic pathway.198,204

Salehi et al205 attempted to overcome the limitations 
hindering the clinical development of essential oils via the 
development of a citrus pectin-based nanoemulsion for 
ZEO (CP-ZEO NE). Both ZEO and CP-ZEO NE treat-
ments dose-dependently decreased MCF-7, MDA-MB-231 
and T47D cell proliferation but had no significant effect on 
the proliferation of normal L929 fibroblast cells. However, 
a reduced sensitivity to ZEO was observed in MDA-MB- 
231 and T47D cells 24 h following treatment, possibly due 
to the high volatility and low stability of ZEO. 
Interestingly, CP-ZEO NE preparation may have improved 
ZEO stability, as CP-ZEO NE-treated MCF-7, MDA-MB- 
231 and T47D cells demonstrated the highest sensitivity to 
CP-ZEO NE at 72 h. This finding is consistent with the 
lower IC50 values of CP-ZEO NE over ZEO at 72 h in 
MCF-7 (5.38 µg/mL vs 33.1 µg/mL), MDA-MB-231 (20.4 
µg/mL vs 30.54 µg/mL) and T47D (0.0016 µg/mL vs 
37.03 µg/mL) cells. Similarly, CP-ZEO NE also 

demonstrated greater anti-proliferative activity against 
MDA-MB-231 spheroids than ZEO, as reflected by a 
lower IC50 value after 48 h of treatment (65.5 µg/mL vs 
118.4 µg/mL). Moreover, CP-ZEO NE also showed pro- 
apoptotic activity against MCF-7, MDA-MB-231 and 
T47D cells, as evidenced by apoptosis-related morpholo-
gical changes (eg, small, rounded, wrinkled and irregular 
cell shape, low-density and membrane blebbing); 
increased orange-red fluorescence, nuclear fragmentation 
and chromatin condensation in dual acridine orange/ethi-
dium bromide (AO/EB) staining test; a DNA ladder pat-
tern on agarose gel electrophoresis; increased number of 
TUNEL-positive cells; “Hedgehog tails” in comet assay; 
increased apoptotic cell population in Annexin V-FITC/PI 
staining; and increased percentage of sub-G1 phase corre-
sponding to apoptotic cells. Pro-apoptotic activity of CP- 
ZEO NE was similarly observed in MDA-MB-231 spher-
oids. Additionally, CP-ZEO NE treatment also induced a 
G2/M phase arrest in MDA-MB-231 cells but a S phase 
arrest in MDA-MB-231 spheroids. Taken together, CP- 
ZEO NE is a biocompatible nanoformulation that is cap-
able of enhancing the stability and anti-proliferative activ-
ity of ZEO as well as exerting pro-apoptotic and cell cycle 
arrest-inducing activities against BC cells and spheroids.

The Anti-Breast Cancer 
Mechanisms of Natural Bioactive 
Compounds and Anti-Breast 
Cancer Activities of Their 
Nanoformulations in Preclinical 
Models
A number of bioactive compounds isolated from natural 
sources have been proven to be effective in the treatment 
of human diseases, including cancer.206 Table 5 sum-
marises the proposed anti-BC mechanisms of selected 
natural bioactive compounds. However, the clinical utili-
sation of natural bioactive compounds is often challenged 
by their low stability, poor aqueous solubility and low 
bioavailability.207 One approach to overcoming these chal-
lenges includes the exploitation of NDDSs (Table 6).

Balanocarpol
Balanocarpol, a resveratrol dimer, can be isolated from 
many Hopea spp., particularly Hopea dryobalanoides 
and Hopea mengarawan found in the Malaysian rain 
forest.208–210 Its anti-BC potential has been preclinically 
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established and linked to the inhibition of sphingosine 
kinase 1 (SK1) enzymatic activity and expression.209 

SK1 catalyses the conversion of sphingosine to sphingo-
sine-1-phosphate, the signalling of which has been impli-
cated in cell survival, proliferation, migration and 
angiogenesis.211,212 SK1 overexpression has been corre-
lated with drug resistance, worse prognosis and reduced 
overall survival in many cancers, thus making it a promis-
ing anti-cancer target.211 Additionally, balanocarpol’s anti- 
BC potential has also been linked to the induction of poly- 
ADP ribose polymerase (PARP) cleavage and the reduc-
tion of DNA synthesis.209 However, its high toxicity, low 
aqueous solubility and poor bioavailability have greatly 
hindered its clinical translation.210

To address the abovementioned limitations of balano-
carpol, Obeid et al210 encapsulated balanocarpol into nio-
somes comprising span 80 and cholesterol (1:1). It was 
found that void niosomes at doses below 625 µg/mL were 
not cytotoxic to A2780 ovarian cancer cells and ZR-75-1 
BC cells. Therefore, 625 µg/mL noisome was used to 
deliver balanocarpol for ensuring any observed cytotoxi-
city was induced solely by balanocarpol. Balanocarpol- 
encapsulated niosomes exhibited significantly greater 
cytotoxicity against ZR-75-1 cells than free balanocarpol 
(IC50 values of 57.97 µM vs >196.6 µM), indicating 
improved anti-BC efficacy.

Cordycepin
Cordyceps spp., an entomopathogenic fungus, is usually 
found in Asia, Europe and North America.213 Cordycepin 
(3-deoxyadenosine), an adenosine analogue, is the main 
bioactive constituent of Cordyceps spp.214 It has been exten-
sively investigated for its pharmacological activities, includ-
ing anti-BC,215–219 antimicrobial,220 anti-inflammatory,221 

analgesic,222 hypoglycaemic,223 hypolipidemic224 and plate-
let inhibitory225 activities. As a nucleoside antagonist, cordy-
cepin is known to exert anti-cancer effects principally by 
inhibiting RNA synthesis.217 Further investigations into its 
anti-BC mechanisms have suggested that the induction of 
autophagy-associated cell death, mitochondrial apoptotic 
pathway and caspase-dependent apoptosis; the regulation of 
p53 and estrogen signalling pathways; the promotion of 
DNA double-strand breaks and DNA damage response; the 
inhibition of poly(ADP)ribosylation; the suppression of 
hedgehog and Notch signalling pathways; the modulation 
of EMT markers; and the stimulation of ROS generation 
are also involved.215–219 However, the clinical application 
of cordycepin has been hindered due to toxicity to normal 

cells as well as poor bioavailability resulting from low aqu-
eous solubility and rapid metabolism by adenosine 
deaminase.226

A study reported the encapsulation of cordycepin into 
PLGA nanoparticles (CPNPs) and observed that CPNPs had 
a higher uptake by MCF-7 cells than free cordycepin.227 This 
translated to a significantly greater cytotoxic effect of CPNPs 
on MCF-7 cells (IC50 values of 16.79 µg/mL vs 47.84 µg/mL). 
In addition, CPNPs also enabled the sustained release of 
cordycepin (65% release in ten days), thus prolonging its 
anti-BC action. Importantly, while free cordycepin elicited 
hemolytic activity against rat red blood cells at 50 to 100 µg/ 
mL, CPNPs of equivalent doses did not cause hemolysis. As 
opposed to free cordycepin, these findings suggest that CPNPs 
can exert marked and prolonged anti-BC activity at a non- 
hemotoxic concentration.

Curcumin
Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-hep-
tadiene-3,5-dione] is a major natural polyphenol found in 
the rhizome of Curcuma longa (turmeric).228 It has shown 
benefits in diseases such as inflammatory conditions, kid-
ney conditions, metabolic syndrome and pain, most of 
which have been attributed to its anti-inflammatory and 
antioxidant activities.228 Importantly, it has also demon-
strated anti-cancer potentials both preclinically and clini-
cally in oral,229 breast,230–233 colorectal,234 pancreatic,235 

skin236 as well as head and neck237 cancers. Specifically, 
the anti-BC activities of curcumin have been linked to the 
modulation of cell cycle regulators and metastasis-related 
markers; the induction of caspase-dependent apoptosis and 
mitochondrial apoptotic pathway; the suppression of PI3K/ 
AKT/mammalian target of rapamycin (mTOR), extracel-
lular signal-regulated kinase (ERK), NF-κB and β-catenin 
signalling pathways; the activation of p53 signalling path-
way; as well as the inhibition of angiogenesis.230–233 

However, the clinical applicability of curcumin is chal-
lenged by its poor bioavailability resulting from low aqu-
eous solubility, poor absorption, extensive metabolism, 
rapid degradation at physiological pH and rapid systemic 
elimination.238,239

Different NDDS classes (eg, dendrosomes, liposomes, 
polymer-based nanocarriers, protein-based nanocarriers, 
metallic nanoparticles and MSNs) have been employed 
to overcome the poor bioavailability of curcumin. For 
example, Farhangi et al240 prepared dendrosomal curcu-
min (DNC) and tested its effects on both in vitro and in 
vivo metastatic BC models. While free curcumin caused 
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an obvious reduction in 4T1 cell viability only at 72 h, 
DNC dose- and time-dependently suppressed 4T1 cell 
viability from 24 to 72 h (IC50 values of 32.5 µM at 24 
h, 25 µM at 48 h and 17.5 µM at 72 h). Furthermore, DNC 
also dose-dependently elicited greater anti-migratory and 
anti-adhesive effects on 4T1 cells than free curcumin. 
Interestingly, DNC only demonstrated slight cytotoxic 
effects on normal mouse embryonic fibroblastic cells at 
high doses, indicating its biocompatible nature. When 
mice bearing 4T1 xenografts were subjected to intraper-
itoneal injection of DNC for seven days, it was found that 
doses up to 80 mg/kg were remarkably safe whereas 160 
and 320 mg/kg DNC caused mild symptoms of hemato-
toxicity, hepatotoxicity and renal toxicity. These suggest 
that ≤80 mg/kg DNC may be more physiologically rele-
vant in treating BC. In comparison to untreated controls, 
DNC-treated mice (40–80 mg/kg; 35 days) showed higher 
survival rates, lower tumour incidence, smaller tumour 
volume and tumour weight as well as lower incidence of 
metastasis. In addition, these mice also had lower mRNA 
levels of NF-κB p105 and its downstream effectors (eg, 
matrix metalloproteinase [MMP]-9, vascular endothelial 
growth factor [VEGF] and cyclooxygenase-2 [COX-2]) 
in BC xenografts, brain, liver, lungs and spleen. Taken 
together, DNC is both biocompatible and capable of 
enhancing the anti-BC efficacy of curcumin, and its 
observed in vitro and in vivo anti-BC activities are likely 
correlated with the suppression of NF-κB signalling.

Hasan et al241 loaded curcumin into nanoliposomes 
derived from salmon, soya or rapeseed lecithins. While 
free curcumin, soya curcumin-loaded nanoliposomes and 
rapeseed curcumin-loaded nanoliposomes induced an 
obvious reduction in MCF-7 cell index only from 12 to 
20 µM, salmon curcumin-loaded nanoliposomes could 
significantly reduce MCF-7 cell index from 5 to 20 µM. 
Interestingly, void salmon nanoliposomes were reported to 
exert greater anti-proliferative effect on MCF-7 cells than 
void soya and rapeseed nanoliposomes. Lipid profiling 
revealed that salmon lecithins uniquely contained a high 
proportion of eicosapentaenoic acid (EPA) and docosahex-
anoic acid (DHA),241 both of which have previously been 
reported to possess anti-cancer potentials.242 Collectively, 
these findings suggest that the observed higher anti-BC 
efficacy of salmon curcumin-loaded nanoliposomes may 
be partly attributed to the synergistic effect between EPA- 
and DHA-containing salmon nanoliposomes and curcu-
min. In another study, the same research group coated 
lecithin nanoliposomes with chitosan and found that 

chitosan-coated curcumin-loaded nanoliposomes exhibited 
greater anti-proliferative activity against MCF-7 cells than 
their uncoated counterparts.243 This improvement in anti- 
BC efficacy offered by chitosan coating is potentially 
linked to enhanced permeation and encapsulation effi-
ciency of nanoliposomes.

Besides, gum arabic-based nanoformulations have also 
been developed. For instance, a study reported the pre-
paration of curcumin loaded-gum arabic aldehyde-gelatin 
(Cur/GA Ald-Gel) nanogels.244 In the study, free curcumin 
was found to significantly reduce MCF-7 cell viability 
from 3.125 to 50 µg/mL. In contrast, Cur/GA Ald-Gel 
nanogels could only induce significant cytotoxic effects 
on MCF-7 cells from 12.5 to 50 µg/mL, and these effects 
were less significant than those induced by equivalent 
doses of free curcumin. This lower in vitro anti-BC effi-
cacy of Cur/GA Ald-Gel nanogels may be explained by 
the slow release of curcumin (ie, <65% during the treat-
ment period of 24 h). Nonetheless, the nano-range size 
(452 ± 8 nm) of Cur/GA Ald-Gel nanogels may promote 
their in vivo tumour accumulation via the EPR effect, and 
their large negative zeta potential (−27 ± 4 mV) may 
confer good in vivo stability. Additionally, the release 
rate of curcumin was observed to be higher under an acidic 
condition (pH 5) than a neutral condition (pH 7.4), which 
is suggestive of preferential curcumin release at the 
tumour sites. Although Cur/GA Ald-Gel nanogels induced 
dose-dependent hemolysis, the observed percentages of 
hemolysis was <5%;244 thus classifying them as “hemo-
compatible” according to the ISO/TR 7406 standard.245 

Overall, these findings suggest that although Cur/GA 
Ald-Gel nanogels did not demonstrate superior in vitro 
anti-BC efficacy as compared to free curcumin, they are 
hemocompatible and their nano-range size, large negative 
zeta potential and pH-dependent release property may lead 
to superior in vivo anti-BC efficacy. Another study 
reported the encapsulation of curcumin into gum arabic- 
sodium alginate (Cur/GA-Alg) nanoparticles.239 

Cytotoxicity assay revealed that the IC50 values of Cur/ 
GA-Alg nanoparticles against MCF-7 cells were consis-
tently lower than those of free curcumin at 24 h (48.40 µg/ 
mL vs 68.20 µg/mL), 48 h (33.26 µg/mL vs 55.86 µg/mL) 
and 72 h (16.84 µg/mL vs 32.10 µg/mL). Importantly, void 
GA-Alg nanoparticles showed no significant cytotoxicity 
against MCF-7 cells, indicating that this NDDS is capable 
of enhancing the anti-BC efficacy of curcumin while being 
biocompatible.
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Poly(vinyl alcohol)/cellulose nanocrystal (PVA/CNC) 
hydrogel membranes, another type of polymer-based nano-
carrier, have also been developed.246 Curcumin-loaded PVA/ 
CNC hydrogel membranes were found to induce significant 
morphological changes (eg, cell shrinkage and increased 
apoptotic bodies) and dose-dependent reduction in viability 
in MCF-7 cells. Furthermore, while free curcumin demon-
strated greater cytotoxicity in normal HFB-4 human melano-
cytes than in MCF-7 cells, curcumin-loaded PVA/CNC 
hydrogel membranes were not cytotoxic to HFB-4 cells. 
These findings collectively indicate that curcumin-loaded 
PVA/CNC hydrogel membranes are biocompatible and BC 
cell-selective. Another study reported a novel water-soluble 
nanomicelle that is formed via the self-assembly of pectin- 
curcumin conjugates, with hydrophobic curcumin sitting in 
the core and hydrophilic pectin polymer backbone forming 
the outer shell.247 It was observed that pectin-curcumin con-
jugates elicited greater cytotoxicity against MCF-7 cells than 
free curcumin (IC50 values of 12.0 ± 3.0 µM vs 48.3 ± 2.9 
µM). This enhancement in cytotoxicity is likely attributed to 
improved aqueous solubility and stability. Notably, pectin- 
curcumin conjugates also demonstrated lower cytotoxicity 
against normal 293A human kidney cells than free curcumin 
(IC50 values of 139.4 ± 2.1 µM vs 70.7 ± 1.5 µM). Taken 
together, conjugation to pectin can enhance the anti-BC 
efficacy of curcumin (via solubility and stability improve-
ment) while minimising its toxicity to normal cells.

Different protein-based nanoformulations of curcumin 
have also been developed. For example, Jithan et al248 devel-
oped curcumin-encapsulated albumin nanoparticles 
(CEANs) and found that CEANs (20–120 µM) exhibited 
greater anti-proliferative effect on MDA-MB-231 cells than 
free curcumin. This enhancement in anti-BC efficacy may be 
a result of enhanced dissolution rate and aqueous solubility. 
Furthermore, it was observed in rats following a single 
intravenous injection of 10 mg CAENs that CAENs tended 
to accumulate in brain and lungs, which are the common sites 
of BC metastases. These observations collectively reflect the 
potentials of CAENs in enhancing the anti-BC efficacy of 
curcumin and in treating metastatic BC. Metwally et al206 

encapsulated curcumin into gelatin (Cur/Gel) nanoparticles 
and found that Cur/Gel nanoparticles exhibited cytotoxicity 
against MCF-7 cells after 48 h (IC50 = 64.8 µg/mL). This 
IC50 value is close to but higher than that of 48 h free 
curcumin treatment (IC50 = 53.18 µg/mL) observed in 
another study,249 which may be explained by the slow release 
of curcumin from nanoparticles (ie, only 40–60% after 48 
h).206 Moreover, void Gel nanoparticles yielded a high IC50 

value of 2.9 mg/mL against MCF-7 cells. These findings 
collectively suggest that Gel nanoparticles are biocompatible 
and capable of prolonging curcumin action, although they do 
not significantly improve the anti-BC efficacy of curcumin.

Curcumin has also been encapsulated into metallic 
nanoparticles. In a study, curcumin-encapsulated 
PEGylated iron oxide-gold nanoparticles (Cur/PEGylated 
Fe3O4@AuNPs; 0–15 µM) elicited greater cytotoxicity 
against SKBR3 BC cells than free curcumin, possibly 
attributable to improved stability and preferential curcu-
min release under acidic conditions.250 Cur/PEGylated 
Fe3O4@AuNPs also demonstrated pro-apoptotic activity 
against SKBR3 cells. Subsequent gene expression analysis 
linked this pro-apoptotic activity to Bax upregulation and 
Bcl-2 downregulation. Additionally, MMP-9 downregula-
tion was also observed. Taken together, Cur/PEGylated 
Fe3O4@AuNPs mediate enhanced cytotoxic effect on BC 
cells by upregulating Bax/Bcl-2 ratio and inducing apop-
tosis; and they may potentially inhibit BC cell migration 
by downregulating MMP-9.

Folic acid (FA) has a strong binding affinity for folate 
receptors, which are glycosylphosphatidylinositol- 
anchored membrane proteins often overexpressed in 
BC.251 Therefore, J. Wang et al252 loaded curcumin into 
calcium-doped dendritic MSNs conjugated with FA (Cur- 
Ca@DMSNs-FA) for achieving active BC cell targeting 
and facilitating cellular uptake of nanoparticles. In the 
study, Cur-Ca@DMSNs-FA demonstrated improved aqu-
eous solubility and in vivo bioavailability as compared to 
free curcumin, and showed a remarkably higher curcumin 
release rate under acidic (80% in 0.5 h) than neutral (35% 
in 12 h) conditions. Unsurprisingly, it was further observed 
that Cur-Ca@DMSNs-FA (5–20 µM) exhibited more sig-
nificant cytotoxicity (9% vs 33% cell viability), pro-apop-
totic activity (25.85% vs 12.5% of total apoptosis ratio) 
and G2/M-phase arrest-inducing activity (41.07% vs 
24.54% of cells in G2/M phase) against MCF-7 cells 
than comparable doses of free curcumin. Interestingly, 
void Ca@DMSNs-FA (320 µg/mL) was non-toxic to 
MCF-7 cells and had a hemolytic ratio of 4.38% (<5%). 
Taken together, this NDDS is biocompatible and capable 
of enhancing the anti-BC efficacy of curcumin via 
enhanced cellular uptake, improved aqueous solubility 
and bioavailability as well as pH-dependent curcumin 
release. The same study reported higher ROS production 
in MCF-7 cells treated with Cur-Ca@DMSNs-FA than 
those treated with free curcumin. Further protein expres-
sion analysis revealed that Cur-Ca@DMSNs-FA also 
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induced greater upregulation of caspase-3, caspase-9, cyto-
chrome c, PARP, p53 and inhibitor of NF-κB (IκB); as 
well as greater downregulation of Bcl-2, β-catenin, NF-κB 
p65, PI3K, phosphorylated AKT and phosphorylated 
mTOR in MCF-7 cells than free curcumin. Collectively, 
these findings linked the anti-BC activities of Cur- 
Ca@DMSNs-FA to the induction of oxidative stress and 
mitochondrial apoptotic pathway, as well as the suppres-
sion of PI3K/AKT/mTOR, β-catenin and NF-κB signalling 
pathways.

Diallyl Disulfide
Allium sativum (garlic), native to Central Asia and north-
eastern Iran, is now widely cultivated throughout the 
world.253,254 It has commonly been used as both a spice 
and a medicinal plant in treating bone diseases, cancer, 
cardiovascular diseases, diabetes, gastric diseases, hyper-
tension, metabolic disorders, microbial infections, skin 
diseases, etc.253,254 These health benefits of A. sativum 
are attributed to its diverse range of bioactive compounds.-
255 Its major organosulfur compound, diallyl disulfide, has 
been reported to mediate anti-BC activities by inducing 
caspase-dependent apoptosis and mitochondrial apoptotic 
pathway, inhibiting histone deacetylation, modulating 
metastasis-related and EMT markers, suppressing β-cate-
nin and SRC/rat sarcoma virus (Ras)/ERK signalling path-
ways, activating c-Jun N-terminal kinase (JNK) and p38 
signalling pathways, upregulating miR-34a and tristetra-
prolin (TTP) as well as downregulating urokinase-type 
plasminogen activator (uPA).256–260 Diallyl disulfide has 
also demonstrated superior anti-BC efficacy in comparison 
to conventional chemotherapeutic agents (eg, 5-fluoroura-
cil and cyclophosphamide), thus suggesting its potential to 
be developed as an anti-BC agent.261

Although the clinical translation of diallyl disulfide has 
been restricted by its low water solubility, poor bioavail-
ability and short half-life, these problems have been 
tackled by NDDSs. Talluri et al262 reported the loading 
of diallyl disulfide into SLNs (DADS-SLNs). DADS- 
SLNs were found to have higher uptake by MCF-7 cells 
than free diallyl disulfide. DADS-SLNs could also prefer-
entially release diallyl disulfide under acidic conditions 
(pH 4.5) and enable sustained diallyl disulfide release up 
to 48 h. As expected, DADS-SLNs (1.562–100 µM) were 
capable of eliciting greater cytotoxic and pro-apoptotic 
effects on MCF-7 cells than free diallyl disulfide. This 
enhancement in anti-BC efficacy was further reflected by 
changes in cellular oxidative status and apoptotic marker 

expression. For instance, DADS-SLN-treated MCF-7 cells 
had higher ROS production; higher levels of pro-apoptotic 
proteins (eg, Bax, Bcl-2-associated agonist of cell death 
[Bad], caspase-3 and caspase-9); and lower level of anti- 
apoptotic protein (Bcl-2) than diallyl disulfide-treated 
MCF-7 cells. Importantly, DADS-SLNs were not cyto-
toxic to normal MCF-10A human breast epithelial cells. 
Taken together, this nanoformulation is biocompatible and 
capable of enhancing the anti-BC efficacy of diallyl dis-
ulfide by exhibiting enhanced cellular uptake as well as 
enabling both pH-dependent and sustained release of dia-
llyl disulfide.

Receptor for advanced glycation end products (RAGE), 
a multi-ligand single transmembrane receptor belonging to 
the immunoglobulin superfamily, is frequently overex-
pressed in late-stage BC.263 Therefore, the same research 
group further conjugated DADS-SLNs with anti-RAGE 
antibody (RAGE-DADS-SLNs) to enable active BC cell 
targeting.10 As expected, RAGE-DADS-SLNs (1.562–100 
µM) exhibited significantly higher cellular uptake and cyto-
toxicity in MDA-MB-231 cells than DADS-SLNs. RAGE- 
DADS-SLNs also showed higher pro-apoptotic activity, as 
reflected by their ability to induce a greater increase in the 
level of pro-apoptotic protein (eg, caspase-9) and a greater 
decrease in the levels of anti-apoptotic proteins (eg, Bcl-2 
and survivin) than DADS-SLNs. Furthermore, it has been 
reported that RAGE activation can lead to the stimulation of 
signalling pathways (eg, ras-related C3 botulinum toxin 
substrate 1 [Rac1], MAPK and NF-κB) implicated in cell 
migration and invasion, thereby contributing to tumour 
progression.264 This indicates that the observed greater 
cytotoxicity and pro-apoptotic activity of RAGE-DADS- 
SLNs than DADS-SLNs may be the consequence of both 
cellular uptake enhancement and RAGE inhibition.10

Epigallocatechin Gallate
Green tea, one of the most widely consumed beverages 
worldwide, is obtained from the leaves of Camellia sinen-
sis tea plant.265 Green tea consumption has long been 
associated with health-promoting properties in athero-
sclerosis, bacterial and viral infections, cancers of the 
breast, colon, oesophagus, kidney, lung, mouth, pancreas, 
small intestine and stomach, diabetes, heart diseases, liver 
diseases, obesity, etc.265 Epigallocatechin gallate (EGCG), 
the major green tea catechin, is believed to contribute to 
the majority of green tea-associated health benefits.266 

Specifically, EGCG has been reported to mediate anti-BC 
effects preclinically via the modulation of metastasis- 
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related markers; the suppression of PI3K/AKT and β-cate-
nin signalling pathways; the suppression of hypoxia-indu-
cible factor-1 alpha (HIF-1α) and NF-κB signalling 
pathways and consequent inhibition of angiogenesis; the 
induction of mitochondrial apoptotic pathway, death 
receptor apoptotic pathway, miR-25-dependent apoptosis 
and autophagy; as well as the inhibition of glucose meta-
bolism and human telomerase reverse transcriptase 
(hTERT) transcription.267–272 Despite these promising pre-
clinical findings, the clinical application of EGCG is hin-
dered due to its poor bioavailability and low stability at 
physiological pH.270

Radhakrishnan et al273 encapsulated EGCG (5% w/w) 
into SLNs, and found that this nanoformulation enabled 
sustained EGCG release (ie, >90% release in 24 h) and 
improved EGCG stability. Expectedly, EGCG-SLNs could 
induce a more significant dose-dependent reduction in 
MDA-MB-231 cell viability than free EGCG (IC50 values 
of 9.7 ± 0.6 µg/mL vs 78.9 ± 4.3 µg/mL). Moreover, 
EGCG-SLNs also elicited greater pro-apoptotic activity 
against MDA-MB-231 cells than free EGCG, as evidenced 
by the observations of more extensive morphological 
changes (eg, cell shrinkage and elongated-to-spherical 
cell shape), nuclear shrinkage and apoptotic body forma-
tion in EGCG-SLN-treated MDA-MB-231 cells. 
Importantly, void SLNs (10–100 µg/mL) lacked observa-
ble cytotoxicity against MDA-MB-231 cells, suggesting 
that this NDDS is biocompatible and capable of enhancing 
the anti-BC efficacy of EGCG via its sustained release and 
stability improvement.

Bombesin (BBN; a 14-amino acid peptide) is a natural 
ligand for gastrin-releasing peptide receptor, which is a 
G-protein coupled receptor that is overexpressed in var-
ious cancers, including BC.274 The same research group 
thus further conjugated EGCG-SLNs with BBN to achieve 
active BC cell targeting.275 In the study, increased cellular 
uptake of BBN-conjugated EGCG-SLNs relative to uncon-
jugated EGCG-SLNs was observed. Consequently, BBN- 
conjugated EGCG-SLNs could exert greater cytotoxicity 
(IC50 values of 3.2 ± 1.7 µg/mL vs 6.9 ± 1.1 µg/mL) and 
pro-apoptotic activity against MDA-MB-231 cells than 
unconjugated EGCG-SLNs. Although both EGCG-SLNs 
and BBN-conjugated EGCG-SLNs exhibited greater anti- 
migratory effect on MDA-MB-231 cells than pure EGCG, 
the effect of the latter was more intensive. Collectively, the 
results indicate that enhanced cellular uptake mediated by 
BBN conjugation can improve the anti-BC efficacy of 
EGCG-SLNs.

Gallic Acid
Gallic acid (3,4,5-trihydroxybenzoic acid), one of the most 
common plant phenolic acids, can be found in a variety of 
medicinal plants and fruits such as Quercus spp. and Punica 
spp.276 It has been associated with tremendous health bene-
fits owing to the wide range of its pharmacological 
activities, including anti-BC,277–281 anti-inflammatory,282 

antimicrobial,283 antioxidant,284 cardioprotective,285 

gastroprotective286 and neuroprotective287 activities. 
Specifically, the anti-BC activities of gallic acid have been 
linked to various mechanisms such as the modulation of p53, 
Mcl-1 and p21 expression and consequent induction of mito-
chondrial apoptotic pathway; the activation of p38 signalling 
pathway as well as consequent modulation of cell cycle 
regulators and induction of caspase-dependent apoptosis; 
the modulation of metastasis-related markers; as well as the 
suppression of NF-κB signalling pathway and consequent 
downregulation of NF-κB target genes signifying anti- 
inflammatory (ie, interleukin [IL]-6, IL-8 and COX-2), 
anti-angiogenic (ie, VEGF), pro-apoptotic (ie, Bcl-2 and 
X-linked inhibitor of apoptosis protein [XIAP]) and anti- 
metastatic (ie, C-X-C chemokine receptor type 4 [CXCR4]) 
effects.277–281 However, the therapeutic potential of gallic 
acid as an anti-BC agent is restricted by its low bioavailabil-
ity resulting from poor absorption and rapid metabolism.288

Hassani et al288 reported the preparation of gum arabic- 
stabilised gallic acid nanoparticles (GANPs). It was 
observed that GANPs could exert more significant cytotoxi-
city against MCF-7 and MDA-MB-231 cells than free gallic 
acid, as well as retard the migratory capacity of MCF-7 and 
MDA-MB-231 cells. Interestingly, GANPs demonstrated 
differential cellular uptake in different BC cell lines, 
whereby a significantly higher uptake was seen in MCF-7 
than MDA-MB-231 cells. This may potentially explain the 
greater cytotoxic and anti-migratory effects of GANPs on 
MCF-7 than MDA-MB-231 cells. Importantly, GANPs 
showed negligible cytotoxicity against normal MCF-10A 
human breast epithelial cells and preferentially released 
gallic acid under acidic condition (pH 4.8; 95.96%) rather 
than neutral condition (pH 7.4; 74.56%), reflecting the 
biocompatibility and BC cell selectivity of this 
nanoformulation.

In the same study, various in vitro antioxidant assays (ie, 
2.2-diphenyl-1-picrylhydrazyl radical [DPPH], nitric oxide 
scavenging and β-carotene bleaching assays) consistently 
suggested that GANPs exhibited greater antioxidant activity 
than free gallic acid.288 This activity enhancement may partly 
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be attributed to the synergistic effect between gallic acid and 
gum arabic, both of which have previously been reported as 
potent antioxidants.284,289 Cancer cells are often in a pro- 
oxidative state.290 ROS is implicated in cancer initiation and 
progression as it can induce gene mutations and changes in 
various signalling pathways involved in cell differentiation, 
survival, growth, proliferation, protein synthesis and glucose 
metabolism.291,292 Using antioxidants to deplete cancer cells 
from these ROS-induced cellular events may thus have pre-
ventive and therapeutic effects. Taken together, GANPs are 
biocompatible and can improve the anti-BC efficacy of gallic 
acid by enhancing its BC cell selectivity and antioxidant 
activity.

Punicalagin and Ellagic Acid
Punicalagin [2,3-(S)-hexahydroxydiphenoyl-4,6-(S,S)-gal-
lagyl-D-glucose], the major P. granatum polyphenol, is 
an ellagitannin that has been reported to mediate anti-BC 
effects via the downregulation of golgi phosphoprotein 3 
(GOLPH3) and consequent modulation of metastasis- 
related and EMT markers, as well as its antioxidant 
activity and consequent inhibition of oxidative DNA 
damage.293,294 However, ellagitannins are not absorbable 
in the gastrointestinal tract.295 They usually undergo phy-
siological pH- and/or gut microbiota-facilitated hydrolysis 
in the stomach or small intestine to yield ellagic acid 
(2,3,7,8-tetrahydroxychromeno[5,4,3-cde]chromene-5,10- 
dione).295 Ellagic acid can be subjected to further meta-
bolism by colonic microbiota to yield bioavailable 
urolithins.296 Similar to punicalagin, ellagic acid has 
demonstrated anti-BC activities preclinically, with the 
associated molecular mechanisms being the inhibition of 
angiogenesis via vascular endothelial growth factor 
receptor 2 (VEGFR2) signalling pathway suppression;297 

the regulation of transforming growth factor-beta (TGF- 
β)/Smads signalling pathway;298 the suppression of β- 
catenin signalling pathway via actinin alpha 4 (ACTN4) 
downregulation and consequent downregulation of stem- 
like markers, cyclins and mesenchymal markers;299 as 
well as the inhibition of CDK6 expression and activity.300 

However, the poor absorption and bioavailability of puni-
calagin and ellagic acid, together with the short elimina-
tion half-life of ellagic acid, can limit their in vivo anti- 
BC efficacies.301,302

A polymer-based nanoformulation of punicalagin and 
ellagic acid has been reported by Shirode et al.189 In the 
study, it was found that punicalagin- and ellagic acid- 
encapsulated PLGA-PEG nanoparticles could exert 

significantly greater growth-inhibitory effects on MCF-7 
and Hs578T cells than free punicalagin and ellagic acid. 
Interestingly, punicalagin-encapsulated PLGA-PEG nano-
particles were more potent than ellagic acid-encapsulated 
PLGA-PEG nanoparticles in both MCF-7 (IC50 values of 
7.5 µM vs 50.5 µM) and Hs578T (IC50 values of 4.1 µM 
vs 83.5 µM) cell lines.

Sulforaphane
Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)butane] is 
an isothiocyanate organosulfur compound that naturally 
occurs in the form of biologically inactive glucoraphanin in 
cruciferous vegetables, especially Brassica oleracea 
(broccoli).303 The conversion of glucoraphanin to sulfora-
phane occurs via myrosinase-catalysed hydrolysis and/or gut 
microbiota-mediated degradation.303 Sulforaphane has been 
extensively investigated for a range of pharmacological prop-
erties, including anti-aging,304 anti-inflammatory,305 

antimicrobial,306 antioxidant,307 hypoglycemic308 and 
neureportective309 activities. Sulforaphane has also been pre-
clinically recognised as a promising anti-BC candidate.310−313 

Its anti-BC effects have been proposed to be mediated via the 
targeting of heat shock response and consequent modulation 
of tumour suppressors and induction of caspase-dependent 
apoptosis;310 the suppression of PI3K/AKT/mTOR/ribosomal 
protein S6 kinase 1 (S6K1) signalling pathway and consequent 
induction of autophagy and inhibition of protein synthesis;311 

the disruption of histone deacetylase 5-lysine-specific histone 
demethylase 1A (HDAC5-LSD1) axis and consequent upre-
gulation of tumour suppressor genes;312 as well as the mod-
ulation of markers associated with aggressive phenotype (eg, 
downregulation of EMT markers, metastasis-related markers, 
pro-inflammatory cytokines and pro-angiogenic growth 
factors).313 However, the industralisation of sulforaphane has 
been hindered due to its low aqueous solubility as well as 
instability resulting from high sensitivity to light, pH, tempera-
ture and oxygen.314

In a study, it was found that sulforaphane-encapsulated 
PEGylated Fe3O4@AuNPs (SF/PEGylated Fe3O4@AuNPs; 
0–15 µM) could exert greater cytotoxicity against SKBR3 
cells than free sulforaphane, possibly due to enhanced stabi-
lity of sulforaphane and its preferential release under acidic 
conditions provided by this nanoformulation.250 The cyto-
toxicity of SF/PEGylated Fe3O4@AuNPs against SKBR3 
cells was mediated by apoptosis induction, whereby down-
regulation of Bcl-2 and upregulation of Bax were observed. 
The further observation of MMP-9 downregulation reflected 
the anti-migratory potential of SF/PEGylated 
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Fe3O4@AuNPs in SKBR3 cells. Collectively, these findings 
suggest that the encapsulation of sulforaphane into 
PEGylated Fe3O4@AuNPs can enhance its anti-BC efficacy, 
and this nanoformulation exhibits pro-apoptotic and anti- 
migratory activities against BC cells.

Future Perspectives
Plant-based natural products have long been recognised as a 
vital source of anti-cancer drugs. This review introduces nine 
selected medicinal plants, including A. capillus-veneris, P. 
quadriaurita, A. muricata, I. turpethum, M. jalapa, P. amboi-
nicus, P. granatum, P. roxburghii and Z. multiflora, the 
extracts/essential oils of which have been evaluated for 
anti-BC potentials. Another nine natural bioactive com-
pounds that have previously demonstrated anti-BC poten-
tials, including balanocarpol, cordycepin, curcumin, diallyl 
disulfide, EGCG, gallic acid, punicalagin, ellagic acid and 
sulforaphane, have also been highlighted. Mechanistic stu-
dies have linked the anti-BC activities of these natural pro-
ducts to a wide range of molecular targets or mechanisms, 
including the modulation of angiogenesis, apoptotic path-
ways, autophagy, cell cycle regulators, cellular eicosanoid 
profile, DNA structure, synthesis, repair genes and damage 
response, EMT markers, enzymes, epigenetic mechanisms, 
glucose metabolism, heat shock response, immune system, 
inflammation, markers associated with aggressive pheno-
type, metastasis-related markers, miRNA, oxidative status, 
proliferation markers, protein synthesis, RNA synthesis, sig-
nalling pathways, stem-like markers and tumour suppressors. 
However, there is a lack of investigation into the anti-BC 
mechanisms of I. turpethum, M. jalapa, P. amboinicus and P. 
roxburghii extracts, which represents a future research direc-
tion to be addressed.

Although the abovementioned natural products have 
shown promising anti-BC activities in preclinical studies, 
they have not been advanced further into clinical settings. 
This may be attributed to their undesirable physicochem-
ical properties, which may result in poor stability, aqueous 
solubility and bioavailability that can adversely influence 
their anti-BC efficacies in humans. There have been 
attempts to resolve these issues, particularly via the 
employment of NDDSs. Carbon-based nanocarriers, den-
drimers, lipid-based nanocarriers, polymer-based nanocar-
riers, protein-based nanocarriers, metallic nanoparticles 
and MSNs represent the major classes of NDDSs that 
have been exploited for BC therapy. As each of these 
NDDS classes is associated with different advantages 

and disadvantages, the selection of the best suited delivery 
system for a specific natural product is critical.

The development of nanoformulation has been reported 
for all selected natural products. In particular, curcumin 
has attracted the greatest research interests, where dendro-
somes, liposomes, polymer-based nanocarriers, protein- 
based nanocarriers, metallic nanoparticles and MSNs 
have all been employed as NDDSs for curcumin. 
Generally, an enhancement in anti-BC efficacy and a 
reduction in toxicity to normal cells have been observed 
with nanoformulations as opposed to their free counter-
parts. These observed benefits are intensified when the 
surface of nanoformulations are conjugated with targeting 
ligands (eg, anti-RAGE antibody and BBN) to achieve 
active BC cell targeting. In addition, nanoformulations of 
curcumin (ie, Cur/GA Ald-Gel nanogels, Cur/PEGylated 
Fe3O4@AuNPs and Cur-Ca@DMSNs-FA), diallyl disul-
fide (ie, DADS-SLNs), gallic acid (ie, GANPs) and sulfor-
aphane (ie, SF/PEGylated Fe3O4@AuNPs) also have the 
tendency to release encapsulated natural products under 
acidic conditions, which enables the targeting of breast 
tumours with acidic TME. Furthermore, nanoformulations 
of cordycepin (ie, CPNPs), curcumin (ie, Cur/GA Ald-Gel 
nanogels and Cur/Gel nanoparticles), diallyl disulfide (ie, 
DADS-SLNs) and EGCG (ie, EGCG-SLNs) exhibit sus-
tained release properties, thus prolonging the anti-BC 
actions of these natural products. Notably, nanoformulated 
I. turpethum extract (ie, I. turpethum extract-loaded 
NIPAAM-VP-AA co-polymeric nanoparticles), P. grana-
tum extract (ie, P. granatum extract-loaded PLGA-PEG 
nanoparticles), P. roxburghii extract (ie, PJSNPs) and 
ZEO (ie, CP-ZEO NE) as well as nanoformulated curcu-
min (ie, DNC and CEANs), diallyl disulfide (ie, DADS- 
SLNs and RAGE-DADS-SLNs), EGCG (ie, EGCG-SLNs 
and BBN-conjugated EGCG-SLNs), gallic acid (ie, 
GANPs), punicalagin and ellagic acid (ie, punicalagin- 
and ellagic acid-encapsulated PLGA-PEG nanoparticles) 
have shown anti-cancer activities in preclinical TNBC 
models, and thus are highly promising for further devel-
opment. Of note, in addition to the surface modification 
and release properties of nanoformulations mentioned 
above, other aspects such as the efficiency and cost of 
their preparation should also be considered to ensure the 
feasible development of these nanoformulations.

Despite the abovementioned promising preclinical 
findings, however, it is of the utmost importance to estab-
lish the biocompatibility or safety profiles of these nano-
formulated natural products. While AMSNPs, 
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unconjugated and anti-EpCAM antibody-conjugated RIP- 
MJ nanoparticles, P. granatum extract-loaded SLNs, 
PJSNPs, CP-ZEO NE, CPNPs, DNC, Cur/GA Ald-Gel 
nanogels, curcumin-loaded PVA/CNC hydrogel mem-
branes, pectin-curcumin conjugates, DADS-SLNs and 
GANPs have been confirmed to be biocompatible with 
preclinical models by current studies, further studies are 
required to ascertain the biocompatibility of other nano-
formulations in preclinical models and subsequently, all 
nanoformulations in humans. Additionally, strategies that 
may further improve the functionality of nanoformulated 
natural products in humans should also be considered.315 

For example, nanoformulations could be tailored to be 
responsive to biological cues in the TME (eg, pH and 
redox status) or external cues (eg, magnetic field and 
ultrasound) for enhancing precision in the delivery and 
release of natural products. Moreover, the TME could 
also be reprogrammed to enhance the tumour accumula-
tion of nanoformulations. For instance, passive and active 
tumour targeting of nanoformulations may be improved 
via the promotion of tumour vascular permeability and the 
upregulation of receptor expression, respectively. 
Furthermore, the development of nanoformulations with 
transcytosis capability may also facilitate deep tumour 
penetration. These represent some interesting aspects that 
may be important for the future development of more 
functional nanoformulated natural products.
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